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§1 History of almost Gorenstein rings

In 1997, B. Barucci and R. Fröberg ([BF])
· · · one-dimensional analytically unramified local rings

In 2013, S. Goto, N. Matsuoka and T. T. Phuong ([GMP])
· · · one-dimensional Cohen-Macaulay local rings
which are not necessarily analytically unramified.

.
Question 1.1
..

......

If it’s possible, what’s the definition of almost Gorenstein rings of higher
dimension?
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§2 Almost Gorenstein local rings

.
Setting 2.1
..

......

(R,m) a Cohen-Macaulay local ring with d = dimR.

∃ the canonical module KR.

|R/m| = ∞.

.
Definition 2.2
..

......

We say that R is an almost Gorenstein local ring, if ∃ an exact sequence

0 → R → KR → C → 0

of R-modules such that µR(C) = e0m(C).
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Therefore in Definition 2.2, if C ̸= (0), then C is Cohen-Macaulay and
dimR C = d− 1. Moreover

µR(C) = e0m(C) ⇐⇒ mC = (f2, f3, . . . , fd)C

for some f2, f3, . . . , fd ∈ m.

Hence C is a maximally generated Cohen-Macaulay module in the sense
of B. Ulrich (cf. [2]), which is called an Ulrich R-module.

.
Remark 2.3
..

......

Suppose that d = 1. Then TFAE.

(1) R is almost Gorenstein in the sense of Definition 2.2.

(2) R is almost Gorenstein in the sense of [GMP, Definition 3.1].
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.
Example 2.4
..

......

(1) k[[t3, t4, t5]].

(2) k[[ta, ta+1, . . . , t2a−3, t2a−1]] (a ≥ 4).

(3) k[[X,Y, Z]]/(X,Y ) ∩ (Y, Z) ∩ (Z,X).

(4) Suppose that R is not Gorenstein. If R is an almost Gorenstein local
ring, then R is G-regular.

(5) 1-dimensional finite CM-representation type.

(6) 2-dimensional rational singularity.
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.
Theorem 2.5 (NZD characterization)
..

......

(1) If R is an almost Gorenstein local ring of dimension d > 1, then so is
R/(f) for genaral NZD f ∈ m.

(2) Let f ∈ m be a NZD on R. If R/(f) is an almost Gorenstein local
ring, then so is R. When this is the case, f /∈ m2, if R is not
Gorenstein.

.
Corollary 2.6
..

......

Suppose that d > 0. If R/(f) is an almost Gorenstein local ring for every
NZD f ∈ m, then R is Gorenstein.
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.
Example 2.7
..

......

Let U = k[[X1, X2, . . . , Xn, Y1, Y2, , . . . , Yn]] (n ≥ 2) be the formal power
series ring over an infinite field k and put

R = U/I2(M),

where I2(M) denotes the ideal of U generated by 2× 2 minors of the
matrix

M =
(

X1 X2 ··· Xn
Y1 Y2 ··· Yn

)
.

Then R is almost Gorenstein with dimR = n+ 1 and r(R) = n− 1.
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.
Proof of Example 2.7.
..

......

Notice that

{Xi − Yi−1}1≤i≤n (here Y0 = Yn) forms a regular sequence on R

R/(Xi − Yi−1 | 1 ≤ i ≤ n)R ∼= k[[X1, X2, . . . , Xn]]/I2(N) = S,

where N =
(

X1 X2 ··· Xn−1 Xn

X2 X3 ··· Xn X1

)
.

Then

S is Cohen-Macaulay with dimS = 1,

n2 = x1n and KS
∼= (x1, x2, . . . , xn−1),

where n is the maximal ideal of S, xi is the image of Xi in S. Hence S is
an almost Gorenstein local ring, since n(x1, x2, . . . , xn−1) ⊆ (x1). Thus R
is almost Gorenstein.
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.
Theorem 2.8
..

......

Let (S, n) be a Noetherian local ring, φ : R → S a flat local
homomorphism. Suppose that S/mS is a RLR. Then TFAE.

(1) R is an almost Gorenstein local ring.

(2) S is an almost Gorenstein local ring.

Therefore

R is almost Gorenstein ⇐⇒ R[[X1, X2, . . . , Xn]] (n ≥ 1) is almost
Gorenstein.

R is almost Gorenstein ⇐⇒ R̂ is almost Gorenstein.
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§3 Semi-Gorenstein local rings

In this section we maintain Setting 2.1.

.
Definition 3.1
..

......

We say that R is a semi-Gorenstein local ring, if R is an almost
Gorenstein local ring which possesses an exact sequence

0 → R → KR → C → 0

such that either C = (0), or C ̸= (0) and C = ⊕ℓ
i=1Ci for some cyclic

R-submodule Ci of C.
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Therefore, if C ̸= (0), then

Ci
∼= R/pi for ∃ pi ∈ SpecR

such that R/pi is a RLR of dimension d− 1.

Notice that

almost Gorenstein local ring with dimR = 1

almost Gorenstein local ring with r(R) ≤ 2

are semi-Gorenstein.

.
Proposition 3.2
..

......

Let R be a semi-Gorenstein local ring. Then Rp is semi-Gorenstein for
∀p ∈ SpecR.
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.
Theorem 3.3
..

......

Let (S, n) be a RLR, a ⊊ S an ideal of S with n = htS a. Let R = S/a. Then
TFAE.

(1) R is a semi-Gorenstein local ring, but not Gorenstein.

(2) R is Cohen-Macaulay, n ≥ 2, r = r(R) ≥ 2, and R has a minimal S-free
resolution of the form:

0 → Fn = Sr M→ Fn−1 = Sq → Fn−2 → · · · → F1 → F0 = S → R → 0

where

tM =


y21y22 · · · y2ℓ y31y32 · · · y3ℓ · · · yr1yr2 · · · yrℓ z1z2 · · · zm
x21x22 · · ·x2ℓ 0 0 0 0

0 x31x32 · · ·x3ℓ 0 0 0
...

...
. . .

...
...

0 0 0 xr1xr2 · · ·xrℓ 0

 ,

ℓ = n+ 1, q ≥ (r − 1)ℓ, m = q − (r − 1)ℓ, and xi1, xi2, . . . , xiℓ is
a part of a regular system of parameters of S for 2 ≤ ∀i ≤ r.
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.

......

When this is the case,

a = (z1, z2, . . . , zm) +
r∑

i=2

I2 (
yi1 yi2 ··· yiℓ
xi1 yi2 ··· xiℓ ) .
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.
Example 3.4
..

......

Let φ : S = k[[X,Y, Z,W ]] −→ R = k[[t5, t6, t7, t9]] be the k-algebra map
defined by

φ(X) = t5, φ(Y ) = t6, φ(Z) = t7 and φ(W ) = t9.

Then
0 → S2 M→ S6 → S5 → S → R → 0,

where
tM =

(
W X2 XY Y Z Y 2−XZ Z2−XW
X Y Z W 0 0

)
.

Hence R is semi-Gorenstein with r(R) = 2 and

Kerφ = (Y 2 −XZ,Z2 −XW ) + I2
(
W X2 XY Y Z
X Y Z W

)
.
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§4 Almost Gorenstein graded rings

.
Setting 4.1
..

......

R =
⊕

n≥0Rn a Cohen-Macaulay graded ring with d = dimR

(R0,m) a local ring

∃ the graded canonical module KR

M = mR+R+

a = a(R)

|R/m| = ∞
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.
Definition 4.2
..

......

We say that R is an almost Gorenstein graded ring, if ∃ an exact sequence

0 → R → KR(−a) → C → 0

of graded R-modules such that µR(C) = e0M(C).

Notice that

R is an almost Gorenstein graded ring
=⇒ RM is an almost Gorenstein local ring.
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.
Example 4.3
..

......

Let R = k[X1, X2, . . . , Xd] (d ≥ 1) be a polynomial ring over an infinite
field k. Let n ≥ 1 be an integer.

R(n) = k[Rn] is an almost Gorenstein graded ring, if d ≤ 2.

Suppose that d ≥ 3. Then R(n) is an almost Gorenstein graded ring
if and only if n | d or d = 3 and n = 2.
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.
Theorem 4.4 (Goto-Iai [3])
..

......

Let A be a Gorenstein local ring, I ⊊ A an ideal of A. If G = grI(A) is
an almost Gorenstein graded ring, then G is Gorenstein.

.
Theorem 4.5
..

......

Let (A,m) be a Gorenstein local ring of dimension d ≥ 3 and Q a
parameter ideal of A. Then TFAE.

(1) R(Q) is an almost Gorenstein graded ring.

(2) Q = m.
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Our goal is the following.

.
Theorem 4.6
..

......

Let (A,m) be a Cohen-Macaulay local ring with |A/m| = ∞, ∃KA. Let I
be an m-primary ideal of A.
If G = grI(A) is an almost Gorenstein graded ring and r(G) = r(A), then
A is an almost Gorenstein local ring.
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Thank you very much for your attention.
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